Local Perturb-and-MAP for Structured Prediction

نویسندگان

  • Gedas Bertasius
  • Qiang Liu
  • Lorenzo Torresani
  • Jianbo Shi
چکیده

Conditional random fields (CRFs) provide a powerful tool for structured prediction, but cast significant challenges in both the learning and inference steps. Approximation techniques are widely used in both steps, which should be considered jointly to guarantee good performance (a.k.a. “inferning"). Perturb-and-MAP models provide a promising alternative to CRFs, but require global combinatorial optimization and hence they are usable only on specific models. In this work, we present a new Local Perturband-MAP (locPMAP) framework that replaces the global optimization with a local optimization by exploiting our observed connection between locPMAP and the pseudolikelihood of the original CRF model. We test our approach on three different vision tasks and show that our method achieves consistently improved performance over other approximate inference techniques optimized to a pseudolikelihood objective. Additionally, we demonstrate that we can integrate our method in the fully convolutional network framework to increase our model’s complexity. Finally, our observed connection between locPMAP and the pseudolikelihood leads to a novel perspective for understanding and using pseudolikelihood.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Optimum Models for Structured Prediction

One approach to modeling structured discrete data is to describe the probability of states via an energy function and Gibbs distribution. A recurring difficulty in these models is the computation of the partition function, which may require an intractable sum. However, in many such models, the mode can be found efficiently even when the partition function is unavailable. Recent work on Perturb-...

متن کامل

Cognitive mapping concept of resource management for the viability of local communities

The local community is a complex socio-economic system, and its ability to function for an indefinitely long period of time (viability) is not investigated sufficiently today. The purpose of the research was, using the cognitive mapping, propose to the local community management developing their own management strategies to ensure its viability. Considering the weakly structured subject area of...

متن کامل

Training Restricted Boltzmann Machine by Perturbation

A new approach to maximum likelihood learning of discrete graphical models and RBM in particular is introduced. Our method, Perturb and Descend (PD) is inspired by two ideas (I) perturb and MAP method for sampling (II) learning by Contrastive Divergence minimization. In contrast to perturb and MAP, PD leverages training data to learn the models that do not allow efficient MAP estimation. During...

متن کامل

Fast Intra Mode Decision for Depth Map coding in 3D-HEVC Standard

three dimensional- high efficiency video coding (3D-HEVC) is the expanded version of the latest video compression standard, namely high efficiency video coding (HEVC), which is used to compress 3D videos. 3D videos include texture video and depth map. Since the statistical characteristics of depth maps are different from those of texture videos, new tools have been added to the HEVC standard fo...

متن کامل

High Dimensional Inference with Random Maximum A-Posteriori Perturbations

In this work we present a new approach for high-dimensional statistical inference that is based on optimization and random perturbations. This framework injects randomness to maximum a-posteriori (MAP) predictors by randomly perturbing its potential function. When the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. A classic result fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017